Coral research director at UOG elected to head regional association

headshot terry donaldson

Professor Terry J. Donaldson of the University of Guam has been voted president-elect of the Western Association of Marine Laboratories. Donaldson serves as the principal investigator and project director for Guam EPSCoR, a $6 million research grant to study the effects of climate change on coral reefs, and was the former director of the UOG Marine Laboratory.

WAML, a regional subsidiary of the National Association of Marine Laboratories, is a network of nonprofit marine laboratories in the Western United States and Pacific Islands that aims to stimulate research and promote education in the marine sciences and to identify problems unique to nonprofit marine laboratories within its jurisdiction.

“My service as president-elect of WAML will be beneficial to the University of Guam, the UOG Marine Laboratory, and Guam EPSCoR in that the linkages, collaborations, and joint research funding opportunities I help to develop and participate in will promote Guam as a premier destination for coral reef research,” Donaldson said.

Additionally, he said, the association works to represent the interests of its member laboratories on both a regional and national scale.

The UOG Marine Lab has been a member of both WAML and NAML since 1986. Donaldson first represented the university in WAML when he was the director of the Marine Lab from late 2013 to early 2016 and maintained the role afterward.

In addition to his duties as president-elect, Donaldson will simultaneously serve as vice chairman on the board for a two-year term. He will then take the role of president in October 2021. He was elected during the associations’ Fall Biennial Meeting, held Sept. 30 to Oct. 2 at the Hatfield Marine Science Center in Newport, Ore.

His appointment comes as the UOG Marine Lab ushers in its 50th anniversary year.

Link to original article:

Guam EPSCoR Graduate Research Assistant Justin Berg receives 2020 Graduate Student Award

justin berg 0 e1614709574870

Congratulations to UOG Graduate Student Justin Thomas Berg for being recognized with the 2020 Graduate Student Award from the UOG Office of Graduate Studies.

The 2020 Graduate Awards is an annual competition recognizing excellence, innovation, and impact within the graduate degree programs.

Berg is expected to receive his Master of Science Degree in Biology at UOG in Spring 2021. He holds a bachelor’s degree from the University of Delaware, double majoring in biology and pre-veterinary medicine and animal biosciences with a minor in chemistry.

He currently is studying the effects of sedimentation on the coral microbiome in southern Guam, specifically how runoff affects the coral microbiome in a degraded watershed. Berg works at the UOG Marine Laboratory in the Bentlage Laboratory and helps with the coral restoration efforts in the Raymundo Laboratory. Berg is also a Guam EPSCoR Graduate Research Assistant and represented the UOG Marine Laboratory at the National EPSCoR conference in October 2019 in South Carolina.

“It’s truly an honor to be recognized for the work that I have applied myself at the University of Guam. I would like to thank the University for this recognition. I would like to thank Guam EPSCoR for their funding and allowing me to work on my high-level, impactful thesis. I would like to thank students, faculty, and boat captains at the UOG Marine Laboratory for the support towards my thesis. Most importantly, I would like to thank my advisor, Dr. Bastian Bentlage. Bastian is a true role model in the lab and pushes me to do better every day. Thank you for this honor! Si yu’os ma’åse,” Justin Berg.

After he completes his graduate studies, Berg aims to receive his doctorate degree and teach in a research university.

Dr. Bastian Bentlage, assistant professor of bioinformatics, UOG Marine Laboratory, says Berg received the award because he not only excels academically in the MS Biology program but he also volunteers his time to serve the program in many ways including being the program’s student representative and providing extensive mentorship to UOG undergraduates and Guam high school students who pursued research internships with Guam EPSCoR program.

“Justin is an exceptional graduate student, excelling both academically and as a mentor shaping the experiences of our student interns. I am very happy that Justin’s efforts are being recognized with this award and feel blessed to serve as his advisor,” Dr. Bastian Bentlage,

On behalf of the entire Guam EPSCoR Team, Congratulations Justin!

University of Guam secures $20 million to expand coral research

2019 uog biorepository kelokelo 2
2019 uog biorepository kelokelo 1 2

The University of Guam has been awarded $20 million to expand its research capabilities on coral reef survival in rapidly changing environmental conditions. The five-year grant is from the National Science Foundation’s Established Program to Stimulate Competitive Research, more commonly referred to as EPSCoR, and will considerably expand upon work undertaken during the previous five-year, $6 million Guam EPSCoR grant project, the Guam Ecosystems Collaboratorium. 

“This is a major grant award which not only validates and expands on the research work of Guam EPSCoR, our Marine Laboratory, and our partners, but it also further establishes the University of Guam as an emergent research institution in the Pacific region,” said UOG President Thomas W. Krise.

Starting July 1, the new grant project — titled the Guam Ecosystems Collaboratorium for Corals and Oceans, or GECCO — will increase the collection, documentation, integration, and analyses of complex genetic and oceanographic data from reefs within the region. These research activities are necessary to understand the evolutionary and ecological processes that drive resilience in coral reefs under stress from climate change and other factors and could provide valuable insight into the development of viable management strategies.

Dr. Terry J. Donaldson, professor of ichthyology at the UOG Marine Laboratory and the principal investigator and project director, said the need for modern, cutting-edge studies on reef ecosystems is urgent.

“Island communities of the Western Pacific and all around the world depend on coral reef ecosystems, but the reefs are struggling to survive amid our rapidly changing climate,” he said. “Guam has the nation’s most diverse and complex coral reefs, so the UOG Marine Lab is the best place to do this research and inform how we can better protect this vital ecosystem.”

The research team, led by Dr. Bastian Bentlage, assistant professor of bioinformatics at the Marine Lab, will collect and analyze genetic, genomic, oceanographic, and ecological data sets. The research team consists of Dr. David Combosch (genetics), Dr. Atsushi Fujimura (oceanography), Dr. Sarah Lemer (genomics), Mr. David Burdick (Biorepository Collections Manager), Dr. Laurie Raymundo (coral ecology), Dr. Tom Schils (phycology), Dr. Dan Lindstrom (genetics), Dr. Leslie Aquino (modeling), Dr. Hyunju Oh (modeling), and Dr. Jaeyong Choi (statistics).

New collections of marine biodiversity from the region will be curated, imaged, and mapped, and specimens — including cryo-preserved tissues for genomics research — stored in the UOG Biorepository along with historical collections dating back more than 50 years. Specimens and field collection data will be digitized and posted in the biorepository’s online-accessible database that was established during the Guam Ecosystems Collaboratorium, providing the scientific community with an invaluable resource for marine biodiversity research.

Mathematical models will use the data gathered to better predict changes in our reef ecosystems. To facilitate this ambitious research project, UOG’s ability to conduct big-data analyses will be expanded by establishing a high-performance computing cluster on its campus and by strengthening its collaborative network with other research institutions.

The new grant will utilize cutting-edge instrumentation and innovative techniques, including:

  • hyperspectral scanning to automate mapping of reef communities;
  • DNA barcoding to facilitate identification of reef organisms, including coral microbiomes, and their role in the stress response of coral reefs;
  • seascape genomics, integrating genomics, and oceanographic modeling to trace connectivity between coral reefs within the region; and
  • micro-CT scanning techniques within the Biorepository to further the understanding of the morphology of marine organisms on reefs and promote a greater understanding of their taxonomic diversity.

“Coral reefs in the Marianas Archipelago are some of the most diverse ecosystems in the world, and Guam represents the United States’ only foothold in the region. This award provides researchers the opportunity to explore these coral reef systems and understand current biodiversity challenges concerning how they respond to climate change,” said NSF EPSCoR Program Manager John-David Swanson. “In addition to improving infrastructure in the jurisdiction, this project aims to target underserved communities and develop innovative programs for STEM education and workforce development.”

2019 uog biorepository burdick

The grant will grow UOG’s research capacity by funding new and visiting faculty positions and post-doctoral fellowships to conduct research, teach specialized courses at the university, and engage graduate and undergraduate students in research.

Beyond research, the GECCO project will develop innovative STEM education and community engagement programs — an effort that will led by Dr. Austin Shelton, assistant professor of extension and outreach — and collaborations within the national and international research communities, an effort that will be led by Dr. Rachael Leon Guerrero, vice provost for research and sponsored programs.

Guam EPSCoR PI selected as president-elect for Western Association of Marine Laboratories

headshot terry donaldson
headshot terry donaldson

Dr. Terry Donaldson, Guam-EPSCoR principal investigator and project director, was voted president-elect of the Western Association of Marine Laboratories (WAML). 

His election was held at WAML’s meeting held in conjunction with the National Association of Marine Laboratories (NAML) Fall Biennial Meeting from Sept. 30 to Oct. 2 at the Hatfield Marine Science Center in Newport, Oregon. In addition to his assigned duties, he will also serve as vice chair of WAML’s Board of Directors for a two-year term. 

WAML is a regional subsidiary of NAML and its membership includes non-profit marine laboratories operated by federal, state, university and other non-profit organizations in the Western United States and Pacific Islands.  WAML’s mission is to stimulate research, promote education in the marine sciences, and provide a forum for the resolution of problems common to non-profit marine laboratories in the United States.

The association encourages the wise use and conservation of marine and coastal resources. For more information about WAML and NAML, please go to

UOG alumna enters doctorate program at University of Newcastle

20190509 mildred kelokelo thesis 09257
20190509 mildred kelokelo thesis 09257

Former Guam-EPSCoR Research Fellow and University of Guam Marine Laboratory graduate student Mildred Kelokelo has been admitted to the doctorate program at the University of Newcastle in New South Wales, Australia.

Kelokelo will study coral farming techniques towards developing, implementing and managing reef restoration efforts in the western Pacific. Her research, which begins in January 2020, will be supported by the South Pacific Regional Environment Programme (SPREP).  

A native of Alotau, Papua New Guinea, Kelokelo worked at the UOG Marine Laboratory’s Biorepository with support from the National Science Foundation-EPSCoR grant to UOG.  Her thesis research focused upon sexuality and sex change in the arc-eye hawkfish (Paracirrhites arcatus).  She earned her Master of Science in Biology degree in Fañomnåkan (January-May) 2019.   

Kelokelo is a co-author of one publication and one manuscript on gonad histology and sex change in reef fishes. She is also preparing to submit for publication a manuscript based upon her thesis research.  Her advisor was Dr. Terry Donaldson.

Guam EPSCoR research on Pago Bay published in science journal

ml pagobay oceanography team 0

The University of Guam’s Established Program to Stimulate Competitive Research (Guam EPSCoR), in collaboration with researchers from the University of Hawai’i at Mānoa-PacIOOS (UH Mānoa), were recently featured in the September 2019 edition of the Regional Studies in Marine Science Journal for their assessment of the oceanographic processes and patterns of Pago Bay.

The study, “Physical Dynamics of the reef flat, channel, and fore reef areas of a fringing reef embayment: An oceanographic study of Pago Bay, Guam,” examined circulation, thermal environment, and rainstorm impacts on the coral reef system in the bay. Observations were conducted for one year, with an array of sensors deployed to measure ocean temperature, wave height, and wind speed and direction, among other variables.

“Long-term observations of oceanographic patterns and processes provide necessary context for integrative ecological studies and for assessing and mitigating anthropogenic impacts to coastal ecosystems,” according to the study.

The collaborative project between the two universities was funded primarily by Guam EPSCoR, which is supported by the National Science Foundation. Researchers in the study include Guam EPSCoR’s Dr. Terry Donaldson, principal investigator, and Dr. Atsushi Fujimura, assistant professor of oceanography and researcher, as well as Dr. Margaret McManus, Christina Comfort, Gordon Walker, and Chris Ostrander from UH Mānoa.

The full article of the study can be read at

ml pagobay oceanography team
This work was supported by the National Science Foundation, USA under Grant Number OIA-1457769 and the National Oceanic and Atmospheric Administration (NOAA), USA through PacIOOS award NA16NOS0120024.

Submit proposals for GEC Seed Funding Grant

cocos acroporase

Guam EPSCoR’s Guam Ecosystems Collaboratorium Seed Funding Grant

Submission Deadline: September 27, 2019

Guam EPSCoR’s Guam Ecosystems Collaboratorium is seeking proposals from junior faculty members of the University of Guam for seed funding grant opportunities.

Guam EPSCoR seed funding will include experimental project costs for collaborative projects in the areas of oceanography, coral genetics, bioinformatics, genomics, coastal geological processes and sedimentation, and Integrated Digitized Biocollections (iDigBio). The grant can include travel funding for training or support that is directly linked to the implementation of research and/or advancing the competitive nature of proposed EPSCoR goals. Competitive seed funding proposals should outline how the proposed work clearly advances the research areas listed above as it is related to Guam EPSCoR strategic goals.

Multiple seed funding grant awards of up to $25,000 will be made available. Successful proposals will be selected based upon relevance to emergent science, research quality, and a demonstrated potential to achieve significant results that lead to peer-reviewed publications and future grant proposal submissions. Awardees should commit research fund expenditures by July 1, 2020, unless otherwise noted or advised. 

Applicants should submit a one- to two-page project description that includes a timeline for planning and research, an itemized budget, and budget justification no later than September 27, 2019 (1700H Chamorro Standard Time).

Submit proposals to Please use the subject line “GEC Seed Funding Y5.

For more information visit or contact Dr. Terry Donaldson, Guam EPSCoR PI/PD, at


Guam EPSCoR graduate to continue work in marine sciences

2019 uog biorepository kelokelo 2
img 0031 compressor

Guam EPSCoR graduate research assistant (GRA) Mildred Kelokelo is set to pursue a career in making significant contributions to marine sciences now that she has completed the biology master’s program at the University of Guam through support from the National Science Foundation (NSF).

Kelokelo received her Master of Science in Biology degree in Fañomnåkan 2019. She worked at the UOG Marine Laboratory, where she helped preserve and catalogue marine specimens in the Guam Ecosystems Collaboratorium Biorepository.

It was there where she drew out her thesis: “Sexuality and Sexual Maturity of the Arc-eye Hawkfish, Paracirrhites arcatus (Cirrhitidae).” Kelokelo evaluated its sexual patterns and reproductive cycles to determine whether or not this type of hawkfish is a protogynous hermaphrodite — its female reproductive organs maturing quicker than the male counterparts. Her thesis defense was well-received and is now on its way to being published.

“Through funding provided by NSF, I was able to not only obtain a master’s degree, but do research that I enjoy, meet other colleagues from different marine science backgrounds, and learn skills and knowledge and gain experiences that help build my career,” Kelokelo said.

20190424 marine lab 08729 compressor

Kelokelo enrolled at UOG after meeting and working with Guam EPSCoR Principal Investigator Dr. Terry Donaldson in Papua New Guinea. The two attended a workshop on field methods for fish gonad histology, and Donaldson was impressed with her work ethic.

“I knew she was interested in post-graduate training, so I recruited her to UOG’s graduate biology program at the Marine Laboratory,” Donaldson said.

Kelokelo accepted a EPSCoR graduate research assistantship and moved to Guam to continue her research. As her mentor, Donaldson said Kelokelo became an asset to the lab and her peers. She assisted Donaldson in a second workshop on fish gonad histology and later co-authored a publication and manuscript on the subject.
“Papua New Guinea has gained a new scientist, one trained at UOG and a fine example of what EPSCoR is about.  I look forward to collaborating with her in the future,” Donaldson said.

Now having earned her master’s degree, Kelokelo said she hopes to continue her work in the field, whether it be cataloguing specimens or continuing with more research on marine fish reproductive biology using histology methods.

“I have learned a great deal while a graduate student with the biorepository and it has taught me to develop good working ethics, including time management to get assigned tasks done, team effort, and developing skills within the laboratory,” she said. “I am grateful for all the support NSF has provided during my studies at the UOG Marine Laboratory.”

47955813337 0095167eaa o compressor

Guam EPSCoR RII Track-1 LOI

p2210128 t2 18ma


 The Guam EPSCoR Office will begin to prepare and submit a proposal to the National Science Foundation Established Program to Stimulate Competitive Research (NSF EPSCoR) Research Infrastructure Improvement Grant Program (RII) for funding to conduct coral reef and biodiversity research, expand and utilize cyberinfrastructure capabilities, increase opportunities in science education, outreach and diversity, promote global collaboration in the conduct of research, and expand workforce development capabilities within Guam and the region. Guam EPSCoR will solicit from individuals at the University of Guam, Guam Community College, and within the Guam community Letters of Interests for project proposals that may be integrated into the Project Core to advance the goals and objectives of the new project which are detailed further below.

Letters of Interest are due January 14, 2019 and should not exceed 1 page in length. Submissions should be emailed to with the subject line “RII Track-1 LOI”. Letters of Interest will be reviewed by the Guam EPSCoR Office and selected participants will be invited to an initial planning meeting on January 18, 2019.


Emerging science: Resilience is the ability of individuals, populations, and communities to persist after disturbances, returning to their original state. Both global and local stressors affect corals at the level of individuals, at the population level through demography and selection, and at the community level by shifts in species composition toward more resilient species. Climate change increases sea surface temperatures and decreases seawater pH, which affects coral health, leading to a breakdown of the coral-photosymbiont association (coral bleaching) and reduced calcification and growth rates. Historically, coral reef management focused on mitigating local stressors (e.g., terrestrial runoff, coastal development) (National Academies of Sciences, Engineering, and Medicine 2018). Corals already under stress locally are likely to respond differently to the addition of global stressors than unperturbed corals.

The recent research review on coral reef persistence and resilience published by the National Academies of Sciences, Engineering, and Medicine (2018) identified coral resilience as the result of responses at the individual, population, and species level. The research of the current EPSCoR RII Track-1 project falls under this umbrella (see background below). With the next proposal, we intend to grow this theme and build on the investments that have been made in this area at the University of Guam (UOG) with the goal of laying the foundation for the Guam Marine Science Research Center (GMSRC) at UOG. Our vision is to establish the GMSRC and make UOG the premier institution for marine and biodiversity research while promoting excellence in student training and greater collaboration with scholars and institutions worldwide.

The theme for the next NSF EPSCoR RII Track-1 proposal will be centered on describing, understanding, and predicting the effects of global climate change on coral reef ecosystems in Guam and the broader Micronesian region across multiple spatial and temporal scales. Ecosystems may be understood broadly to encompass those systems that interface with coral reefs.

Activities proposed for the next request for funding through NSF EPSCoR should align with:

  • The following of NSF’s 10 Big Ideas:
    1. Understanding the rules of life
    2. Harnessing the data revolution
    3. Growing convergence research
    4. Developing mid-scale research infrastructure
  • The report by the Committee on Interventions to Increase the Resilience of Coral Reefs (National Academies of Sciences, Engineering, and Medicine 2018)
  • The Guam Coral Reef Resilience Strategy (Guam Coral Reef Initiative, 2018)
  • NSF’s iDigBio program for the digitization of biodiversity collections

Building for the future: The establishment of a Guam marine science research center at the University of Guam is a primary goal for the development of research capacity on Guam.  This center would include construction of a new Marine Laboratory building and the Biorepository Research Collections Building.  The existing Marine Laboratory main building would be remodeled to create additional laboratory and office spaces to accommodate new and visiting researchers. The goal is for this new UOG facility to be designated as an NSF-funded National Research Center for coral reef and biodiversity studies.  Construction costs will be met by various grants and leveraged funding, with matching funds (20%) from the NSF EPSCoR RII Track-1 (2020-2025) grant devoted towards the construction of the Biorepository building. NSF EPSCoR funding will be used to equip this building and to enhance relevant existing and new laboratories within the new research center.


Guam and the broader region depend on coral reefs. Our reefs host a diverse biota, provide coastal protection, economic stability in a tourism-based economy and ensure food security in the region by supporting local fisheries. Climate change is predicted to have severe impacts on coral reefs and in turn will have lasting effects on the ecosystem services provided by these reefs; this will have profound and lasting impacts on societies across the region. Managing local reef stressors remains an important task but is unlikely to ward off the impacts of global climate change, increasing sea surface temperatures, and changing ocean chemistry. Global coral bleaching events are predicted to occur annually by 2050 and are likely to lead to wide-spread and persistent reef declines (Frieler et al., 2013). The reliance of humans on an ecosystem at risk of collapse requires understanding the mechanisms of coral reef responses to a changing climate and their possible adaptation to changing conditions (cf., National Academies of Sciences, Engineering, and Medicine 2018). Predicting the scale of expected impacts of coral reef decline will be necessary to develop meaningful intervention strategies to mitigate biodiversity loss and impacts of coral reef declines on our society.

Marine genomics and oceanography will play central roles in developing the research theme for the next proposal, building on the previous research efforts and investments in infrastructure made under the current NSF EPSCoR RII Track-1 award – faculty and post-doctoral fellow hires, development of the Biorepository to document biodiversity and house biological tissue collections, significant upgrades in our capacity for molecular genetics research, oceanographic equipment, and computational infrastructure.

Dispersal patterns and environment associations of individual species, populations and communities of reef organisms can describe and explain present-day diversity while also providing the foundation for predicting the future diversity of coral reefs. A better understanding of the impacts of changing reef ecosystems will require development and implementation of analytical methods that cross disciplinary boundaries (e.g., integrating existing ecological monitoring data, population ecology, oceanography, and mathematics). Understanding the mechanisms of acclimatization and adaptation of reef organisms to a changing climate has the potential to inform mitigation and remediation strategies. The latter creates direct links to restoration efforts already underway in Guam and promotes research into ecological engineering solutions to mitigate impacts of climate change (e.g., selecting appropriate sites, species, individuals for restoration; restoration informed by a mechanistic understanding of coral regeneration and growth).

While climate change has direct effects on reefs, its effects on terrestrial ecosystems fit under the theme of the next proposal, as changes in terrestrial ecosystems may exert pressures on reef systems (e.g., declines in vegetation leading to erosion; spread of alien species that lead to destabilization of native ecosystems). Considering the dependence of Guam and the broader region on reefs for economic stability, studies that investigate effects of predicted climate change on human populations and the economy may potentially fit under this umbrella as well (e.g., predicting the effects of climate change on the migration of people).

The UOG Biorepository is tasked with documenting the biodiversity of Guam and the broader region, and bringing collections and their management into the 21st century by employing protocols, techniques and tools promoted by the NSF-funded iDigBio project ( Biorepository activities in the new project will include the following:

  • Richard H. Randall Coral Collection: curation, digitization, imaging and long-term storage
  • Rebuilding the Richard Dickinson Memorial Mollusk Collection: collection, curation, digitization, imaging and long-term storage
  • Rebuilding the Collection of Fishes: collection, curation, digitization, imaging and long-term storage
  • Barcoding marine fishes of the Mariana Islands: intertidal to mesophotic coastal species with an analysis of their biogeographical relationships
  • Barcoding insular freshwater and estuarine fishes of Micronesia with an analysis of their biogeographic relationships
  • Rebuilding the Collections of Invertebrates: collection, curation, digitization, imaging and storage


Cyberinfrastructure Development

Development and implementation of strategies and networks to increase research capacity.

Education, Outreach and Diversity (EOD), and Workforce Development

Between 2020-2025, Guam EPSCoR proposes to expand Education, Outreach, and Diversity (EOD) activities in the Guam Ecosystems Collaboratorium. The “Guam Green Growth” or G3 Initiative will be established. G3 will build capacity and develop the local workforce in four (4) NICE areas, further stimulating Guam’s competitive research capabilities. The G3 initiative will contribute to creating a new sustainable green economy for the jurisdiction, which has traditionally been supported by tourism and government spending.

  1. N- Natural Resources: Guam EPSCoR has demonstrated success in building capacity to support the understanding and management of the jurisdiction’s natural resources amid global environmental changes. Guam EPSCoR supported dozens of graduate research assistantships (GRAs) and summer research experiences (SREs) for undergraduates in the marine and environmental sciences. Educational outreach activities extend the science of the Guam EPSCoR to thousands more in the community. The NSF INCLUDES Pilot: Growing STEM, leverages the success of Guam EPSCoR’s EOD activities and creates a pathway from high school to terminal STEM degrees for Pacific Islander students. These efforts to build capacity for improved understanding and management of natural resources will continue in the new EPSCoR initiative.
  2. I- Information Technology: The Guam Science & Technology Committee indicated that Guam needs to build capacity in information technology to support the booming telecommunications industry. Guam EPSCoR will support internships and training opportunities such as coding camps. Guam EPSCoR will coordinate efforts with Silicon Village, an organization of telecommunications professionals working together to address capacity needs.  Guam EPSCoR will build scientific interest and understanding throughout the community by contributing to the establishment of Guam’s first and only STEM Center. The center will be created in a former NASA Apollo tracking station that the U.S. Navy is expected to lease to the University of Guam. A Challenger Learning Center ( will be a core feature of the center to take participants on a simulated Marianas Trench mission. Guam NASA EPSCoR resources will be leveraged for this effort.
  3. C-Circular Economy: Guam EPSCoR will spark the creation of a circular economy in the jurisdiction to improve island sustainability. Circular Economy principles are 1) design out waste and pollution, 2) keep products and materials in use, and 3) regenerate natural systems. Guam relies heavily on imports to meet the needs of society. Over 100,000 shipping containers arrive at the Port of Guam each year, while nearly 15,000 barrels of petroleum products are used each day. As the island has limited space to continue digging holes to create new landfills, improved waste reduction and management strategies are crucial. Circular Economy concepts will be stimulated throughout the community. Examples of circular economy initiatives include, converting green waste into compost, waste to energy, food waste to animal feed, aquaponics, and harnessing renewable energy (sun, wind, and ocean).
  4. E- Energy Independence: Guam EPSCoR will build capacity for the jurisdiction in new renewable energy technologies, microgrid technologies, and energy policy. New UOG partnerships with the Arizona State University’s Global Institute of Sustainability and School of Engineering will be leveraged to stimulate action for energy independence in Guam and the broader Micronesia region. Guam EPSCoR will support a new faculty line in engineering/planning/sustainable development to lead these efforts. 

Partners of this effort will include the Guam Economic Development Authority, UOG Center for Island Sustainability, UOG Sea Grant, UOG Office of Information Technology, UOG School of Business and Public Administration, Bank of Hawaii Center for Entrepreneurship and Innovation, Small Business Development Centers throughout Micronesia, Silicon Village, Guam Power Authority, Guam Solid Waste Authority, and Arizona State University Global Institute of Sustainability.

Through EOD and Workforce Development initiatives, Guam EPSCoR will be a leader for informing policy, building local STEM capacity, and implementing solutions to island challenges.

The Collaboratorium: promotion of international research collaborations.


Guam EPSCoR encourages the submission of Letters of Interest for proposals that may be integrated into the core project from the following suggested areas of research, development and engagement:

  • Ocean acidification and responses by reef organisms
  • Coral health under stress
  • The role of algae in the resilience and maintenance of reef systems
  • Changing reefs and changing peoples in Micronesia
  • Remote sensing and reef research
  • Robotics and reef research
  • Diatoms of Micronesia (Biorepository collections)
  • Terrestrial and Marine Insects of Micronesia (Biorepository collections)
  • Flora of Micronesia in the University of Guam Herbarium (Biorepository collections)
  • Marine Flora of Micronesia in the UOGML collection (Biorepository collections
  • Promoting scientific research opportunities at the community college level
  • Other proposed activities will be considered in relation to their relevance to the core project


Research under the current EPSCoR RII Track-1 grant relies on genomic and oceanographic tools to study coral reef resilience under the following paradigm: Coral resilience is the result of responses at the individual, population, and species level.

Our aim is to understand and describe the mechanisms of resilience in corals in the face of global and local stress, with coral bleaching being our focal global stressor. Local stressors investigated in our projects include terrestrial runoff caused by a poor watershed usage (recurrent arson wildfires and popular off-roading activities) and coastal development (pollution and tourism). Identifying mechanisms of resilience has the potential to incorporate/engineer resilience into mitigation strategies. For example, Guam Ecosystem Collaboratorium (GEC) researchers work on examining the genetic diversity of corals reared in Guam’s coral nursery for restoration purposes. Linking population genetics to environmental tolerances of corals, for example, has the potential to select resilient individuals for reef restoration (National Academies of Sciences, Engineering, and Medicine 2018).

The overarching hypothesis above can be broken down into three components: resilience is driven by the ability of the coral holobiont to acclimate to stress; differences in population resilience are driven by connectivity and local adaptations; and interspecific differences in resilience are shaped by species-specific traits and responses to environmental stress.

  1. Resilience is driven by the ability of the coral holobiont to acclimate to stress.
    • Acclimation to stressors comes at an energetic cost, affecting the health of the coral holobiont. To address this issue, we use gene expression to investigate the response of the coral holobiont to bleaching stress across a depth gradient in Pago Bay, relying on oceanographic data collected from a subset of the Pago Bay sensor network to identify micro-habitat differences, (a clear link between oceanography and genetics). Similarly, we perform gene expression experiments across a sedimentation gradient in Fouha Bay as a local stressor interacting with seasonal bleaching stress (see previous page). Further, the photophysiology of corals in these experimental systems is studied using PAM fluorometry while tissue lipid content and reactive oxygen species will be determined in collaboration with Dr. D. Baker at the University of Hong Kong, strengthening the collaborative network of the GEC.
    • Repeated exposure to stressors (and survival) promotes acclimation via cellular-level responses. Past studies have shown the importance of coral’s thermal history in aiding acclimatization, increasing capacity for mitigating cellular-level stress (Weis, 2010). In fact, corals that were periodically subjected to a specific stress, such as high temperatures, have shown that they can acquire a higher resilience toward this particular stress in the future (Putnam and Gates 2015, Brown et al. 2002, Brown and Cossins 2011).  We are investigating coral acclimation capabilities and mechanisms of genetic plasticity through gene expression and epigenetic studies. For example, we are documenting a rapid acclimation response of the coral holobiont to heat stress, using gene expression in controlled experiments and in parallel possible long-term acclimation via epigenetic mechanisms. Since acclimation may vary across individuals and species, experiments are performed on several species (genera Acropora and Porites).
    • The abiotic environment may mitigate stress and promote acclimation at different spatial scales. Water flow in particular may mitigate the impact of sea surface temperatures surpassing bleaching thresholds, as suggested by increased mortality of near-shore patches of staghorn Acropora corals during recent bleaching events in Guam (Raymundo et al. 2017). Building on this observation, we sampled staghorn Acropora corals from different flow environments in situ and conducted experiments in flow tanks to investigate how water flow may mitigate the rapid gene expression response that allows corals to acclimate to increased temperatures (identification of field sites and construction of flow tanks were facilitated by the GEC oceanographer); we found that increased water flow leads to gene front-loading, aiding in acclimation (Fifer 2018; Fifer et al. in prep). In collaboration with the Okinawa Institute of Science and Technology (OIST, Japan), GEC researchers measure the production of reactive oxygen species in corals exposed to thermal stress under different water flow regimes, adding relevant physiological data to our gene expression datasets. Lastly, building on the Pago Bay sensor network, reciprocal transplant experiments across depths are planned for the summer of 2019 to study the acclimation potential of Acropora surculosa originating from different micro-habitats. 
  2. Differences in population resilience are driven by connectivity and local adaptations.
    • Populations with high levels of genetic connectivity are more resilient to environmental stress. While both local and global stressors may lead to local mass mortalities, high connectivity among populations represents an important source for beneficial alleles and recruits that can promote fast recovery. Here, the GEC research team performs island-wide population genetic assessments of three Acropora and one Porites species to evaluate their recovery potential. The larval stages of different coral species may spend different lengths of time in the water column, affecting their ability to disperse. Larval dispersal potential was studied in the Marianas using a combination of sea surface current modeling based on ocean drifter data and larval transport models (Kendall & Poti 2014; Kendall & Poti 2015). Acoustic Doppler Current Profilers (ADCP) will be deployed at sites sampled for population genetics during the summer 2019 spawning season to characterize current velocities and directions at these sites. Using both the Kendall & Poti (2014, 2015) models and our smaller scale ADCP data, we will be able to discern if population genetic diversity is a result of predominantly local recruitment or recruitment from off-islands sources (e.g., the broader Micronesian region). This effort will directly link population genetics and coastal oceanography. Relying on explicit larval transport models will also allow designing sampling strategies for future population genetics research to identify source and sink populations across larger geographic scale.
    • High levels of genetic diversity across populations allows local stressors to act as environmental filters, leading to locally adapted resilient populations. Population genetic analyses of corals (genera Acropora and Porites) across environmental gradients are conducted by GEC researchers and students at multiple sites in Guam, both on the fore- and back-reef. These data allow us to detect possible allele frequency shifts across habitats. Understanding the effects of environmental filtering on coral resilience will directly impact management decisions. For example, resilience can be built into restoration efforts by identifying appropriate source colonies for specific restoration target sites. 
  3. Interspecific differences in resilience are shaped by species-specific traits and responses to environmental stress.
    • Species with higher population connectivity are more resilient than species with lower levels of population connectivity. Under 2a, we described our framework of how population connectivity affects coral resilience at the level of individual species. Comparing population genetic patterns across multiple species sampled from the same sites allows us to address if differences in genetic diversity and connectivity may (partially) explain the differences in resilience observed between different coral species on Guam
    • Resilience of coral communities is driven by community composition. Some coral communities will be more resilient than others due to differences in taxonomic composition of communities. The Pago Bay sensor network will provide the data to parameterize a numerical model of oceanographic processes in Pago Bay. The long-term coral reef monitoring project led by GEC biorepository data manager Burdick documented the bleaching and mortality of corals in Pago Bay through the 2017 bleaching event using photo-transects. Using a nested model of the larger Pago Bay oceanographic model, we will use hindcasting to evaluate if differences in coral community resilience are the result of taxonomic composition or environmental differences between sites. The coral reef monitoring project will revisit the Pago Bay transects to document recovery of coral communities and we will perform a follow-up analysis, correlating the oceanographic model with recovery rates of communities, thus co-opting and leveraging existing time-series datasets and analyses.
    • Species-specific traits explain differences in resilience between taxa. Numerous coral traits are available through the Coral Trait Database (Madin et al. 2016) and may serve as the foundation for investigating the covariation of traits and resilience established through the long-term coral reef monitoring efforts in Guam. Phylogenetic comparative methods [e.g., Felsenstein’s (1985) phylogenetic independent contrasts] represent a viable approach for investigating covariation of traits while accounting for the non-independence of species connected by evolutionary history and by extension non-independence of traits. To fully leverage existing coral trait data, it is vital to establish the identity of coral species (on Guam and elsewhere) and their relationships to each other. We will accomplish this goal using genetic barcoding and phylogenetic/ phylogenomic analyses of Guam’s coral fauna.  Comparative trait analyses will begin in Project Year 5. The specimens and notes contained in the Randall coral collection that will become part of the biorepository will be a vital resource for this effort. 


Contact Dr. Terry Donaldson, Guam EPSCoR PI/PD at or Mellani Lubuag, Guam EPSCoR Program Manager at

The Established Program to Stimulate Competitive Research (EPSCoR) is designed to fulfill the mandate of the National Science Foundation (NSF) to promote scientific progress nationwide. A jurisdiction is eligible to participate in the NSF EPSCoR Research Infrastructure Improvement Grant Program (RII) if their most recent 3-year level of NSF research support is equal to or less than 0.75% of the total NSF Research and Related Activities (R&RA) budget. Through this program, NSF establishes partnerships with government, higher education, and industry that are designed to effect sustainable improvements in a jurisdiction’s research infrastructure, Research and Development (R&D) capacity, and hence, its R&D competitiveness.
(National Science Foundation).


Brown B, Dunne R, Goodson M, Douglas A (2002) Experience shapes the susceptibility of a reef coral tobleaching. Coral Reefs, 21, 119-126.

Brown B, Cossins AR (2011) The potential for temperature acclimatisation of reef corals in the face ofclimate change. Coral Reefs: An Ecosystem in Transition. Springer.

Felsenstein J (1985) Phylogenies and the comparative method. The American Naturalist, 125:1-15.

Fifer J (2018) Examining gene expression of heat-stressed staghorn coral under differentflow environments. Graduate Program in Biology, University of Guam. M.S. Thesis.

Fifer J, Bentlage B, Lemer S, Fujimura AG, Sweet M, Raymundo LJ (in prep) Going with theflow: coral colonies in high flow environments can beat the heat.

Frieler, K., M. Meinshausen, A. Golly, M. Mengel, K. Lebek, S. D. Donner, andO. Hoegh-Guldberg. 2013. Limiting global warming to 2 °C is unlikely to save most coral reefs.
Nature Climate Change 3:165.

Guam Coral Reef Initiative. 2018. Guam Coral Reef Resilience Strategy. 68 pp

Kendall MS, Poti, M (2014) Potential larval sources, destinations, and self-seeding in theMariana Archipelago documented using ocean drifters. Journal of Oceanography, 70: 549-557.

Kendall MS, Poti M (eds.) (2015) Transport pathways of marine larvae around the MarianaArchipelago. Silver Spring, MD: NOAA Technical Memorandum NOS NCCOS 193.

Madin JS, Anderson KD, Andreasen MH et al. (2016) The Coral Trait Database, a curateddatabase of trait information for coral species from the global oceans. Scientific Data 3:160017.

National Academies of Sciences, Engineering, and Medicine (2018) A research review ofinterventions to increase the persistence and resilience of coral reefs. Washington, DC: The National Academies Press.

Raymundo LJ, Burdick D, Lapacek VA, Miller R, Brown V (2017) Anomalous temperatures andextreme tides: Guam staghorn Acropora succumb to a double threat. Marine Ecology ProgressSeries, 564: 47-55.

Raymundo LJ, Burdick D, Hoot WC, Miller RM, Brown V, Reynolds T, Gault J, Idechong J,Fifer J, Williams A (in review) Successive bleaching events cause mass mortality in Guam, Micronesia.

Skip to content